nC1xan−1=240.......(1)
nC2x2an−2=720.........(2)
nC2x3an−3=1080........(3)
(2)(1)⇒(n)(n−1)2nxa=31
6=a(n)(n−1).......(4)
(3)(2)⇒2(n)(n−1)(n−2)(n)(n−1)(3)(2)xa=1080720
⇒(n−2)x3a=32⇒29a(x)(x−2)........(5)
31⇒(n)(n−1)(n−2)x2na2(3)(2)=92
⇒(n−1)(n−2)x23a2=91
54⇒92×6=n−2n−1=34
⇒n=5∴ax=23
a=32x; Now equation (1) ⇒(n)(n)(32x)4=240
⇒x5=5240(23)4⇒x=3