nC1​xan−1=240.......(1)
nC2​x2an−2=720.........(2)
nC2​x3an−3=1080........(3)
(2)(1)​⇒(n)(n−1)2n​xa​=31​
6=a(n)(n−1)​.......(4)
(3)(2)​⇒2(n)(n−1)(n−2)(n)(n−1)(3)(2)​xa​=1080720​
⇒(n−2)x3a​=32​⇒29​a(x)(x−2)​........(5)
31​⇒(n)(n−1)(n−2)x2na2(3)(2)​=92​
⇒(n−1)(n−2)x23a2​=91​
54​⇒92×6​=n−2n−1​=34​
⇒n=5​∴ax​=23​
a=32x​; Now equation (1) ⇒(n)(n)(32x​)4=240
⇒x5=5240​(23​)4⇒x=3​